Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm

نویسندگان

  • Pieter Ghysels
  • Wim Vanroose
چکیده

Scalability of Krylov subspace methods suffers from costly global synchronization steps that arise in dot-products and norm calculations on parallel machines. In this work, a modified Conjugate Gradient (CG) method is presented that removes the costly global synchronization steps from the standard CG algorithm by only performing a single non-blocking reduction per iteration. This global communication phase can be overlapped by the matrix-vector product, which typically only requires local communication. The resulting algorithm will be referred to as pipelined CG. An alternative pipelined method, mathematically equivalent to the Conjugate Residual method that makes different trade-offs with regard to scalability and serial runtime is also considered. These methods are compared to a recently proposed asynchronous CG algorithm proposed by B. Gropp. Extensive numerical experiments demonstrate the numerical stability of the methods. Moreover, it is shown that hiding the global synchronization step improves scalability on distributed memory machines using the message passing paradigm and leads to significant speedups compared to standard CG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems

A High Performance Computing alternative to traditional Krylov subspace methods, pipelined Krylov subspace solvers offer better scalability in the strong scaling limit compared to standard Krylov subspace methods for large and sparse linear systems. The typical synchronization bottleneck is mitigated by overlapping time-consuming global communication phases with local computations in the algori...

متن کامل

The Communication-Hiding Conjugate Gradient Method with Deep Pipelines

Krylov subspace methods are among the most efficient present-day solvers for large scale linear algebra problems. Nevertheless, classic Krylov subspace method algorithms do not scale well on massively parallel hardware due to the synchronization bottlenecks induced by the computation of dot products throughout the algorithms. Communication-hiding pipelined Krylov subspace methods offer increase...

متن کامل

A Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei

In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...

متن کامل

A new hybrid conjugate gradient algorithm for unconstrained optimization

In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Parallel Computing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2014